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Generalized Isothermal Universes

M. Govender1 and K. S. Govinder1,2

We present a simple nonstatic generalization of the isothermal universe. The cosmolog-
ical fluid obeys a barotropic equation of state of the form p = αρ. We employ a causal
heat transport equation of the Maxwell–Cattaneo form to study the thermodynamical
behavior of our model.
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1. INTRODUCTION

Inhomogeneous cosmological models with either heat flux or shear viscos-
ity seem to have solved many of the pathologies of the standard model such
as the horizon problem, entropy generation, and the flatness problem (Deng and
Mannheim, 1990, 1991) without invoking exotic matter distributions such as scalar
fields or dark matter. However, many of the models incorporating heat flux lack
a proper thermodynamical investigation especially when the cosmic fluid is far
from equilibrium (Anile et al., 1998; Krasinski, 1997). Causal heat transport was
first investigated by Triginer and Pavon (1995) in spherically symmetric inhomo-
geneous cosmologies. This was later followed by other workers (Govender and
Govinder, 2001; Herrera et al., 2000; Maartens et al., 1999) with many interesting
results such as inflationary models driven by causal heat flux.

In this paper we present a simple method which generalizes the static isother-
mal universe first studied by Saslaw et al. (1996). The Saslaw et al. model has
many interesting features. Firstly, the cosmic fluid in the static model obeys a
barotropic equation of state of the form p = αρ. This well defined equation of
state together with simple forms for the metric functions allows an exact treatment
of the dynamical quantities associated with the matter distribution. Secondly, it
has been argued that the isothermal cosmological model of Saslaw et al. could
represent the asymptotic state of the Einstein–de Sitter model. The generalized
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model incorporates many of the essential features of the static isothermal universe
such as the barotropic equation of state. In fact at late times the generalized model
evolves to the static model of Saslaw et al. The generalized model could describe
an isothermal sphere of galaxies in quasi-hydrostatic equilibrium with heat dissi-
pation driving the system to equilibrium. As pointed in Saslaw et al. (1996), any
local inhomogeneities that develop within such a system of galaxies would damp
out as a result of the nonlinear interactions with surrounding galactic matter. Such a
distribution would still be an isothermal sphere with the characteristic r−2 density
distribution.

The paper is organized as follows. In Section 1, we present the static isother-
mal universe first investigated by Saslaw et al. (1996). In Section 2, we generalize
the static model to include heat flux. In the next section a thermodynamical treat-
ment within the context of extended irreversible thermodynamics is carried out.
The special case of inflation is considered in Section 4.

2. THE BASIC EQUATIONS

We begin with a general spherically symmetric static metric of the form

ds2 = −A2
0(r ) dt2 + B2

0 (r ) dr2 + r2 d�2, (1)

where d�2 is the metric of the unit 2-sphere. The static isothermal universe due
to Saslaw et al. (1996) is characterised by

A0 = Ar4α/(1+α), B0 = 1 + 4α

(1 + α)2
, (2)

where A is an arbitrary constant. The energy density and pressure for the static
model is given by

ρ0 = 4α

4α + (1 + α)2

1

r2
(3)

p0 = 4α2

4α + (1 + α)2

1

r2
, (4)

which clearly indicates that the fluid obeys a barotropic equation of state of the form
p = αρ. This model was shown to be dynamically stable under density perturba-
tions owing to the fact that it is always in hydrostatic equilibrium. Any perturbation
in the density profile will be accompanied by a corresponding pressure change
that keeps the cosmic fluid in hydrostatic equilibrium. We observe that, while both
ρ0 and P0 diverge as r → 0, the mass contained within a shell of radius R

m =
∫ R

0
ρ0r2 dr (5)

remains finite.
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In attempting to find a nonstatic generalization of the static isothermal uni-
verse given by (1) we begin with a spherically symmetric shear-free metric of the
form

ds2 = −A2
0(r ) dt2 + b2(t)

[
B2

0 (r ) dr2 + r2 d�2
]

, (6)

where A0(r) and B0(r) are given by (2) and the metric function b(t) is yet to
be determined. This form of the metric has been used extensively in the past to
effectively model the gravitational collapse of radiating stars with an initial static
matter distribution (Bonner et al., 1989).

The fluid 4-velocity is ua = A−1
0 δa

0 , its volume rate of expansion � =
∇aua is

� = 1

A0

ḃ

b
(7)

where an overdot denotes d/dt .
We model the matter content as an imperfect fluid with heat conduction so

that the energy–momentum tensor is (Bonner et al., 1989)

Tab = (ρ + p)uaub + pgab + qaub + qbua , (8)

where ρ is the energy density, p is isotropic pressure, and qa = qna is the heat
flux, with na a unit radial vector.

The Einstein field equations for the metric (6) and energy momentum ten-
sor (8) yield

ρ = 1

b2

(
3

A2
0

ḃ2 + ρ0

)
(9)

p = 1

b2

[
− 1

A2
0

(2b̈b + ḃ2) + p0

]
(10)

q = − 2

A0 B0b

(
A′

0

A0

ḃ

b

)
, (11)

where we have introduced

ρ0 = − 1

B2
0

[
1

r2
− 2

r

B ′
0

B0

]
+ 1

r2
, (12)

p0 = 1

B2
0

[
1

r2
+ 2

r

A′
0

A0

]
− 1

r2
, (13)

which define the energy density and pressure of the static matter configuration.
Since A0 and B0 represent the static solution, the pressure isotropy condition

A′′
0

A0
− A′

0

A0

B ′
0

B0
− 1

r

(
1

r
+ A′

0

A0
+ B ′

0

B0

)
+ B2

0

r2
= 0 (14)
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is immediately satisfied. To close the system of equations we impose a barotropic
equation of state of the form p = αρ (where α is a constant) which leads to

2bb̈ + (1 + 3α)ḃ2 = A2
0(p0 − αρ0). (15)

Since the static isothermal universe also obeys a barotropic equation of state (p0 =
αρ0), we have from (15)

2bb̈ + (1 + 3α)ḃ2 = 0 (16)

of which the general solution is

b(t) = (c0t + c1)2/3(1+α) (17)

with c0 and c1 constants of integration. We also note that (16) admits inflationary
solutions when

b(t) = b0 eH0t , (18)

where b0 and H0 > 0 are constants. In this case we must have α = −1.

3. INHOMOGENEOUS COSMOLOGICAL MODEL

As an application in cosmology we will consider our solution (17) more
closely. The metric (6) can be written as

ds2 = −A2r8α/(1+α) dt2 + (c0t + c1)4/3(1+α)
[(

1 + 4α

(1 + α)2

)2
dr2 + r2 d�2

]
.

(19)

The dynamical quantities for the nonstatic generalization are

ρ =
[

4α

4α + (1 + α)2

1

r 2

]
(c0t + c1)−4/3(1+α) + 3c2

0

3A2(1 + α)2
(c0t + c1)−2 (20)

p =
[

4a2

4α + (1 + α)2

1

r 2

]
(c0t + c1)−4/3(1+α) + 3αc2

0

3A2(1 + α)2
(c0t + c1)−2 (21)

q = −8a(1 + a)r−(1+5α)/(1+α)

A(α2 + 6α + 1)
(c0t + c1)−(5+3α)/3(1+α). (22)

In order to investigate the physical viability of the models we employ a causal
heat transport equation of Maxwell–Cattaneo type

τhb
auc∇cqb + qa = −κ

(
hb

a∇bT + T ub∇buα

)
, (23)

where hb
a = δb

a + uaub is the projection tensor into the comoving rest space, T
is the local equilibrium temperature, κ is the thermal conductivity, and τ is the
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relaxational timescale. Setting τ = 0 in (23) we obtain the noncausal Fourier–
Eckart law for quasi-stationary heat transport, which leads to pathological behavior
in the propagation velocity of thermal signals.

For the general metric (19), Eq. (23) reduces to

τr q̇ + A0q = − κ

B0b
(A0T )′, (24)

where τr is the relaxation time. We assume that the matter content behaves like
a radiation fluid interacting with matter and hence the thermal conductivity κ is
given by

κ = κ0T 3τc, (25)

where τc is the mean collision time. We note that the expansion of the universe de-
fines a natural timescale, the expansion time, H = 3|�|−1. A necessary condition
for maintaining local thermal equilibrium between electrons, baryonic matter, and
radiation is

τc < H−1. (26)

For example, at a high enough temperature of the order of 1010 K, as is the case
for neutrino decoupling we have

τc ∝ H−5, H ∝ T 2. (27)

At lower temperatures of the order of 103 K, where electron–photon interactions
occur via Thompson scattering we may assume that the relaxation time is propor-
tional to the collision time, τc:

τr = βτc, (28)

where β is a constant. This is only a first approximation as a physically viable
assumption would be

τr = 3γ (t)

�
, (29)

where γ (t) acts as a fine-tuning parameter (Coley et al., 2002).
We further assume that the cosmic fluid is composed of highly relativistic

particles, as was the case in the very early universe when dissipative processes
took place. Here we take the energy density to be

ρ = aT 4, (30)

where a is a constant. Substituting all of this into (24) yields

τc = 2A′
0

A0 B0

ḃ

b2

[
2

β A′
0

A2
0 B0

(
b̈

b
− 2

ḃ2

b2

)
− κ0 A0ρ0

aB0b2

(
A′

0

A0
+ ρ ′

0

4ρ0

)
− 3

κ0

2aB0 A2
0

(
ḃ

b

)2
]−1

.

(31)
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In order for the particles to remain in thermal equilibrium with the cosmic fluid
we must have

τc < |�|−1. (32)

Since we assume here that the cosmic fluid behaves irreversibly, the entropy is no
longer conserved, but increases, according to the second law of thermodynamics
(Maartens, 1996). The entropy production rate is given by the divergence of the
entropy four-current and since we have a nonzero heat flux we can write

Sa
a = qqqa

κT 2
, (33)

where the thermodynamical temperature is given in (30). The deviation from equi-
librium is measured by the covariant dimensionless ratio

|q|
ρ

= 2
A′

0

B0
(
3ḃ2 + ρ0 A2

0

) |ḃ|. (34)

For the radiation dominated era (α = 1/3), this ratio decays rapidly at late times
(see Fig. 5). More interestingly, this ratio is independent of r for all time during
the radiation dominated era. This implies that the fluid is only close to equilibrium
at late times as one expects.

Figures 1 and 2 compare the collision time derived from the Eckart theory
and the extended irreversible thermodynamics scenario respectively to the Hubble
time for the radiation dominated era. It is clear that the Eckart theory displays
pathological behavior of the collision time, especially during the early evolution of

Fig. 5. |q|p vs. time, with α = 1/3.
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Fig. 1. Comparison of Hubble time (solid line) and “noncausal” collision time (β = 0)
(broken line) with α = 1/3 and r = 1.

the model. One expects this as the cosmic fluid in this period is far from equilibrium,
and relaxational effects dominate here (Anile et al., 1998).

Figures 3 and 4 depict the entropy production rate in the Eckart and ex-
tended irreversible thermodynamics cases, respectively. We note that the entropy
production rate is of many orders of magnitude greater in the causal theory as
compared to the Eckart theory for early evolution times. As the model evolves

Fig. 2. Comparison of Hubble time (solid line) and “causal” collision
time (β = 1) (broken line) with α = 1/3 and r = 1.
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Fig. 3. Noncausal entropy production, (33), using (2) with α = 1/3 and r = 1.

the entropy production rate drops off and for late times the Eckart and extended
thermodynamical models predict similar behavior.

We also note that when α = 0, our model reduces to the flat FRW model, i.e.,
the Einstein–de Sitter universe. Here both the pressure and the heat flux vanishes
and the energy density behaves as t−2. We then conclude that the matter dominated,
nonstatic isothermal universe, is the Einstein–de Sitter universe.

Fig. 4. Causal entropy production, (33), using (2) with α = 1/3 and r = 1.
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4. INFLATIONARY COSMOLOGY

In this section we employ the causal heat transport equation (23) to investigate
the effects of heat dissipation in an inflating model. We use the solution (18) found
in Section 2. The Einstein field equations for the solution (18) yield

ρ = ρ0

b2
0

e−2H0t + 3H 2
0

A2
0

(35)

p = p0

b2
0

e−2H0t − 3H 2
0

A2
0

(36)

q = − 2A′
0

A2
0 B0

(
H0

a0

)
e−H0t (37)

It is clear that for late times the model approaches a de Sitter-like equilibrium with
p = −ρ. The causal heat transport equation (23) reduces to

2
A′

0

A2
0

H0

a0
(A0 − H0τ ) = κ(A0T )′

b0
, (38)

where the collision time, thermal conductivity, and temperature profile are yet to
be specified. Following Maartens et al. (1999) we set

τ = A0 H−1
0 (39)

T = U (t)

A0
, (40)

where U(t) is an arbitrary positive function and the relaxational time is of the
order of the Hubble time. Note that for any choice of U, the temperature decreases
radially outward with the heat flux being directly radially inward. This is acceptable
as pointed in Maartens et al. (1999) and Herrera et al. (2000), if one notes that
the accelerative contribution to the heat flux (arising from the inertia of the heat
energy) dominates over the temperature gradient. It was recently shown that the
strength of dissipative inflation can be measured by a control parameter of the form

ᾱ = κT

τ (ρ + p)
(41)

in a fluid undergoing heat dissipation only. For our model we have

ᾱ = κU eH0t b2
0�

ρ0(1 + α)A0
, (42)

where the fluid volume expansion is given by

� = 3
H0

A0
. (43)
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We note that stronger inflationary expansion is characterized by larger values of
�, which confirms earlier findings that the parameter ᾱ can be utilized to measure
the strength of dissipative inflation (Govender and Govinder, 2001; Herrera et al.,
2000).

5. SUMMARY

We have provided a simple framework which generalizes the static cosmo-
logical model of Saslow et al. to include the effects of heat dissipation. The models
presented here are simple exact models, which are at least not physically unrea-
sonable in describing some epoch of the evolution of the early universe. Such
models allow for a more transparent analysis of the underlying physics, and they
can also serve as a useful check for numerical procedures that arise in more realistic
solutions.
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